A primal-dual interior-point algorithm for nonlinear least squares constrained problems
نویسندگان
چکیده
منابع مشابه
A Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs
We present a primal-dual interior point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter ρ in the merit function i...
متن کاملPrimal-dual interior point QP-free algorithm for nonlinear constrained optimization
In this paper, a class of nonlinear constrained optimization problems with both inequality and equality constraints is discussed. Based on a simple and effective penalty parameter and the idea of primal-dual interior point methods, a QP-free algorithm for solving the discussed problems is presented. At each iteration, the algorithm needs to solve two or three reduced systems of linear equations...
متن کاملA primal-dual interior point method for nonlinear semidefinite programming
In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed within the framework of the line search strategy. We show the global convergence property of our method.
متن کاملPrimal-dual interior-point methods for PDE-constrained optimization
Abstract. This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in L. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier L-setting is analyzed, but also a more involved L-analysis, q < ∞, is pr...
متن کاملA Primal-dual Interior Point Algorithm for Convex Quadratic Programs
In this paper, we propose a feasible primal-dual path-following algorithm for convex quadratic programs.At each interior-point iteration the algorithm uses a full-Newton step and a suitable proximity measure for tracing approximately the central path.We show that the short-step algorithm has the best known iteration bound,namely O( √ n log (n+1) ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Top
سال: 2005
ISSN: 1134-5764,1863-8279
DOI: 10.1007/bf02578992